4-BIT SHIFT REGISTER WITH 3-STATE OUTPUTS

The SN74LS395 is a 4-Bit Register with 3-state outputs and can operate in either a synchronous parallel load or a serial shift-right mode, as determined by the Select input. An asynchronous active LOW Master Reset (MR) input overrides the synchronous operations and clears the register. An active HIGH Output Enable (OE) input controls the 3-state output buffers, but does not interfere with the other operations. The fourth stage also has a conventional output for linking purposes in multi-stage serial operations.

- Shift Left or Parallel 4-Bit Register
- 3-State Outputs
- Input Clamp Diodes Limit High-Speed Termination Effects

CONNECTION DIAGRAM DIP (TOP VIEW)

PIN NAMES

$\mathrm{P}_{0}-\mathrm{P}_{3}$	Parallel Inputs DS_{5}
\underline{S}	Serial Data Input
$\underline{\mathrm{S}}$	Mode Select Input
$\underline{\mathrm{CP}}$	Clock (Active LOW) Input
$\underline{M R}$	Master Reset (Active LOW) Input
OE	Output Enable (Active HIGH) Input
$\mathrm{O}_{0}-\mathrm{O}_{3}$	3-State Register Outputs
Q_{3}	Register Output
NOTES:	

NOTES:
a) 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A}$ HIGH/1.6 mA LOW.

LOADING (Note a)	
HIGH	LOW
0.5 U.L.	0.25 U.L.
65 U.L.	15 U.L.
10 U.L.	5 U.L.

4-BIT SHIFT REGISTER WITH 3-STATE OUTPUTS

LOW POWER SCHOTTKY

SN74LS395

LOGIC DIAGRAM

FUNCTION DESCRIPTION

The SN74LS395 contains four D-type edge-triggered flip-flops and auxiliary gating to select a D input either from a Parallel (P_{n}) input or from the preceding stage. When the Select input is HIGH, the P_{n} inputs are enabled. A LOW signal on the S input enables the serial inputs for shift-right operations, as indicated in the Truth Table.
State changes are initiated by HIGH-to-LOW transitions on the Clock Pulse (CP) input. Signals on the P_{n}, D_{S} and S inputs can change when the Clock is in either state, provided that the recommended set-up and hold times are observed. When the

S input is LOW, a CP HIGH-LOW transition transfers data in Q_{0} to Q_{1}, Q_{1} to Q_{2}, and Q_{2} to Q_{3}. A left-shift is accomplished by connecting the outputs back to the P_{n} inputs, but offset one place to the left, i.e., O_{3} to $\mathrm{P}_{2}, \mathrm{O}_{2}$ to P_{1} and O_{1} to P_{0}, with P_{3} acting as the linking input from another package.
When the OE input is HIGH, the output buffers are disabled and the $Q_{0}-Q_{3}$ outputs are in a high impedance condition. The shifting, parallel loading or resetting operations can still be accomplished, however.

MODE SELECT — TRUTH TABLE

Operating Mode	Inputs @ t_{n}					Outputs @ $\mathrm{t}_{\mathrm{n}+1}$			
	MR	CP	S	$\mathrm{D}_{\text {s }}$	P_{n}	O_{0}	O_{1}	O_{2}	O_{3}
Asynchronous Reset Shift, SET First Stage	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	\underbrace{x}	X	$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{gathered} \mathrm{L} \\ \mathrm{O}_{0 \mathrm{n}} \end{gathered}$	$\begin{gathered} \mathrm{L} \\ \mathrm{O}_{1 \mathrm{n}} \end{gathered}$	$\begin{gathered} \mathrm{L} \\ \mathrm{O}_{2 n} \end{gathered}$
Shift, RESET First Stage Parallel Load	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	\imath^{2}	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{X} \end{aligned}$	$\begin{gathered} \mathrm{X} \\ \mathrm{P}_{\mathrm{n}} \end{gathered}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{P}_{0} \end{aligned}$	$\begin{gathered} \mathrm{O}_{0 \mathrm{n}} \\ \mathrm{P}_{1} \end{gathered}$	$\overline{\mathrm{O}_{1 n}}$	$\begin{aligned} & \mathrm{O}_{2 n} \\ & \mathrm{P}_{3} \end{aligned}$

H = HIGH Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Immaterial
$t_{n}, n+1=$ time before and after CP HIGH-to-LOW transition
NOTE:
When $\overline{\mathrm{OE}}$ is HIGH , outputs $\mathrm{O}_{0}-\mathrm{O}_{3}$ are in the high impedance state; however, this does not affect other operations or the Q_{3} output.

GUARANTEED OPERATING RANGES

Symbol	Parameter	Min	Typ	Max	Unit
V_{CC}	Supply Voltage	4.75	5.0	5.25	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Ambient Temperature Range	0	25	70	${ }^{\circ} \mathrm{C}$
I_{OH}	Output Current - High			-0.4	mA
I_{OL}	Output Current - Low			8.0	mA

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

| Symbol | Parameter | | Limits | | | Test Conditions |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.
AC CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Limits			Unit	Test Conditions
		Min	Typ	Max		
$\mathrm{f}_{\text {MAX }}$	Maximum Input Clock Frequency	30	45		MHz	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & C_{L}=15 \mathrm{pF} \end{aligned}$
tPHL	Propagation Delay, Clear to Output		22	35	ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Low to High Propagation Delay, High to Low		$\begin{aligned} & 15 \\ & 25 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	ns	
$\begin{aligned} & \hline \text { tPZH } \\ & \text { tPZL } \end{aligned}$	Output Enable Time		$\begin{aligned} & 15 \\ & 17 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	ns	
$\begin{aligned} & \text { tPLZ } \\ & \text { tPHZ } \end{aligned}$	Output Disable Time		$\begin{aligned} & 12 \\ & 11 \end{aligned}$	$\begin{aligned} & \hline 20 \\ & 17 \end{aligned}$	ns	$\mathrm{CLL}_{\mathrm{L}}=5.0 \mathrm{pF}$

AC SETUP REQUIREMENTS $\left(T_{A}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Limits			Unit	Test Conditions
		Min	Typ	Max		
tW	Clock Pulse Width	16			ns	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{t}_{\text {s }}$	Setup Time, Mode Select	40			ns	
t_{s}	Setup Time, All Others	20			ns	
$t_{\text {h }}$	Data Hold Time	10			ns	

SN74LS395

AC WAVEFORMS

The shaded areas indicate when the input is permitted to change for predictable output performance.

*The Data Input is D_{S} for $S=L O W$ and P_{n} for $\mathrm{S}=\mathrm{HIGH}$.
Figure 1

Figure 3

Figure 2

Figure 4

AC LOAD CIRCUIT

Figure 5

