8-BIT SHIFT REGISTERS WITH SIGN EXTEND

These 8-bit shift registers have multiplexed input/output data ports to accomplish full 8 -bit data handling in a single 20-pin package. Serial data may enter the shift-right register through either D0 or D1 inputs as selected by the data select pin. A serial output is also provided. Synchronous parallel loading is achieved by taking the register enable and the S/P inputs low. This places the three-state input/output ports in the data input mode. Data is entered on the low-to-high clock transition. The data extend function repeats the sign in the Q_{A} flip-flop during shifting. An overriding clear input clears the internal registers when taken low whether the outputs are enabled or off. The output enable does not affect synchronous operation of the register.

- Multiplexed Inputs/Outputs Provide Improved Bit Density
- Sign Extend Function
- Direct Overriding Clear
- 3-State Outputs Drive Bus Lines Directly
(TOP VIEW)

8-BIT SHIFT REGISTERS WITH SIGN EXTEND

LOW POWER SCHOTTKY

ORDERING INFORMATION

GUARANTEED OPERATING RANGES

Symbol	Parameter			Min	Typ	Max	Unit
V_{CC}	Supply Voltage		$\begin{aligned} & 54 \\ & 74 \end{aligned}$	$\begin{gathered} 4.5 \\ 4.75 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} 5.5 \\ 5.25 \end{gathered}$	V
T_{A}	Operating Ambient Temperature Range		$\begin{aligned} & 54 \\ & 74 \end{aligned}$	$\begin{gathered} -55 \\ 0 \end{gathered}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{gathered} 125 \\ 70 \end{gathered}$	${ }^{\circ} \mathrm{C}$
IOH	Output Current - High	QH^{\prime}	54, 74			-0.4	mA
IOL	Output Current - Low	$\begin{aligned} & \mathrm{Q}_{\mathrm{H}^{\prime}} \\ & \mathrm{Q}_{\mathrm{H}^{\prime}} \end{aligned}$	$\begin{aligned} & 54 \\ & 74 \end{aligned}$			$\begin{aligned} & 4.0 \\ & 8.0 \end{aligned}$	mA
IOH	Output Current - High	$\begin{aligned} & Q_{A}-Q_{H} \\ & Q_{A}-Q_{H} \end{aligned}$	$\begin{aligned} & 54 \\ & 74 \end{aligned}$			$\begin{aligned} & \hline-1.0 \\ & -2.6 \end{aligned}$	mA
IOL	Output Current - Low	$\begin{aligned} & Q_{A}-Q_{H} \\ & Q_{A}-Q_{H} \end{aligned}$	$\begin{aligned} & 54 \\ & 74 \end{aligned}$			$\begin{aligned} & 12 \\ & 24 \end{aligned}$	mA

BLOCK DIAGRAM

FUNCTION TABLE

OPERATION	INPUTS							INPUTS/OUTPUTS				$\begin{gathered} \text { OUTPUT } \\ \mathbf{Q}_{H^{\prime}} \end{gathered}$
	CLEAR	REGISTER ENABLE	S/P	$\begin{aligned} & \text { SIGN } \\ & \text { EXTEND } \end{aligned}$	$\begin{aligned} & \text { DATA } \\ & \text { SELECT } \end{aligned}$	OUTPUT ENABLE	CLOCK	$\mathrm{A}^{\prime} \mathrm{Q}_{\mathbf{A}}$	B / Q_{B}	C/Qc	. $\mathrm{H} / \mathrm{Q}_{\mathrm{H}}$	
Clear	L	H	X	X	X	L	X	L	L	L	L	L
	L	X	H	X	X	L	X	L	L	L	L	L
Hold	H	H	X	X	X	L	X	QA0	QB0	$Q_{C 0}$	QH0	Q H 0
Shift Right	H	L	H	H	L	L	\uparrow	D_{0}	$Q_{\text {An }}$	Q ${ }_{\text {n }}$	$Q_{G n}$	$Q_{G n}$
	H	L	H	H	H	L	\uparrow	D1	QAn	QBn	$Q_{G n}$	$Q_{G n}$
Sign Extend	H	L	H	L	X	L	\uparrow	QAn	$Q_{\text {An }}$	Q ${ }_{\text {n }}$	$Q_{G n}$	$Q_{G n}$
Load	H	L	L	X	X	X	\uparrow	a	b	c	h	h

When the output enable is high, the eight input/output terminals are disabled to the high-impedance state; however, sequential operation or clearing of the register is not affected. If both the register enable input and the S / P input are low while the clear input is low, the register is cleared while the eight input/output terminals are disabled to the high-impedance state.

H = HIGH Level (steady state)
L = LOW Level (steady state)
X = Irrelevant (any input, including transitions)
$\uparrow=$ Transition from LOW to HIGH level
$\mathrm{Q}_{\mathrm{A} 0} \ldots \mathrm{Q}_{\mathrm{H} 0}=$ the level of Q_{A} through Q_{H}, respectively, before the indicated steady-state conditions were established
$Q_{A n} \ldots Q_{H n}=$ the level of Q_{A} through Q_{H}, respectively, before the most recent \uparrow transition of the clock
D0, D1 = the level of steady-state inputs at inputs D0 and D1 respectively
a... $\mathrm{h}=$ the level of steady-state inputs at inputs A through H respectively

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Symbol	Parameter		Limits			Unit	Test Conditions		
			Min	Typ	Max				
V_{IH}	Input HIGH Voltage		2.0			V	Guaranteed In All Inputs	HIGH Voltage for	
VIL	Input LOW Voltage	54			0.7	V	Guaranteed Input LOW Voltage for All Inputs		
		74			0.8				
$\mathrm{V}_{\text {IK }}$	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$		
VOH	Output HIGH Voltage$Q_{A}-Q_{H}$	54	2.4	3.2		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOH}=\mathrm{MAX}$		
		74	2.4	3.2		V			
VOH	Output HIGH Voltage $Q_{H^{\prime}}$	54	2.5	3.4		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOH}^{\text {a }}$ MAX		
		74	2.7	3.4		V			
V_{OL}	Output LOW Voltage$Q_{A}-Q_{H}$	54, 74		0.25	0.4	V	$\mathrm{lOL}=12 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \text { MIN, } \\ & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL or or }} \mathrm{V}_{\text {IH }} \\ & \text { per Truth Table } \end{aligned}$	
		74		0.35	0.5	V	$\mathrm{lOL}=24 \mathrm{~mA}$		
V_{OL}	Output LOW Voltage $Q_{H}{ }^{\prime}$	54, 74			0.4	V	$\mathrm{l} \mathrm{OL}=4.0 \mathrm{~mA}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \mathrm{MIN}, \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IL or }} \mathrm{V}_{\text {IH }} \\ & \text { per Truth Table } \end{aligned}$	
		74			0.5	V	$\mathrm{OLL}=8.0 \mathrm{~mA}$		
IOZH	Output Off Current HIGH$Q_{A}-Q_{H}$				40	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$		
IOZL	Output Off Current LOW$Q_{A}-Q_{H}$				-400	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$		
${ }^{\text {I H }}$	Input HIGH Current	Other			20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$		
		$\mathrm{A}-\mathrm{H},$ Data Select			40	$\mu \mathrm{A}$			
		Sign Extend			60	$\mu \mathrm{A}$			
		Other			0.1	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$		
		Data Select			0.2	mA			
		Sign Extend			0.3	mA			
		A-H			0.1	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$		
IIL	Input LOW Current	Other			-0.4	mA	$V_{C C}=M A X, V_{I N}=0.4 \mathrm{~V}$		
		Data Select			-0.8	mA			
		Sign Extend			-1.2	mA			
Ios	Short Circuit Current (Note 1)	$\mathrm{Q}_{H^{\prime}}$	-20		-100	mA	$V_{C C}=$ MAX		
		$\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	-30		-130	mA	$V_{C C}=M A X$		
ICC	Power Supply Current				60	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		

[^0]AC CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$

Symbol	Parameter	Limits			Unit	Test Conditions
		Min	Typ	Max		
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	25	35		MHz	$C_{L}=15 \mathrm{pF}$
tPHL tpLH	Propagation Delay, Clock to QH^{\prime}		$\begin{aligned} & 26 \\ & 22 \end{aligned}$	$\begin{aligned} & 35 \\ & 33 \end{aligned}$	ns	
tPHL	Propagation Delay, Clear to QH^{\prime}		27	35	ns	
tpHL tpLH	Propagation Delay, Clock to $Q_{A}-Q_{H}$		$\begin{aligned} & 22 \\ & 16 \end{aligned}$	$\begin{aligned} & 33 \\ & 25 \end{aligned}$	ns	$\begin{aligned} & C_{\mathrm{L}}=45 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$
tPHL	Propagation Delay, Clear to $Q_{A}-Q_{H}$		22	35	ns	
$\begin{aligned} & \text { tpZH } \\ & \text { tPZL } \end{aligned}$	Output Enable Time		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	ns	
tphZ tPLZ	Output Disable Time		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	ns	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$

AC SETUP REQUIREMENTS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$

Symbol	Parameter	Limits			Unit	Test Conditions
		Min	Typ	Max		
tW	Clock Pulse Width HIGH	25			ns	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
tw	Clock Pulse Width LOW	15			ns	
tw	Clear Pulse Width LOW	20			ns	
$\mathrm{t}_{\text {s }}$	Data Setup Time	20			ns	
t_{s}	Select Setup Time	15			ns	
th	Data Hold Time	0			ns	
$t_{\text {h }}$	Select Hold Time	10			ns	
trec	Recovery Time	20			ns	

DEFINITIONS OF TERMS

SETUP TIME (t_{s}) - is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from LOW-to-HIGH in order to be recognized and transferred to the outputs.
HOLD TIME (t h) - is defined as the minimum time following the clock transition from LOW-to-HIGH that the logic level must be maintained at the input in order to ensure continued
recognition. A negative HOLD TIME indicates that the correct logic level may be released prior to the clock transition from LOW-to-HIGH and still be recognized.

RECOVERY TIME (trec) - is defined as the minimum time required between the end of the reset pulse and the clock transition from LOW-to-HIGH in order to recognize and transfer HIGH Data to the Q outputs.

[^0]: Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

