8-BIT ADDRESSABLE LATCH

The SN54/74LS259 is a high-speed 8-Bit Addressable Latch designed for general purpose storage applications in digital systems. It is a multifunctional device capable of storing single line data in eight addressable latches, and also a 1-of-8 decoder and demultiplexer with active HIGH outputs. The device also incorporates an active LOW common Clear for resetting all latches, as well as, an active LOW Enable.

- Serial-to-Parallel Conversion
- Eight Bits of Storage With Output of Each Bit Available
- Random (Addressable) Data Entry
- Active High Demultiplexing or Decoding Capability
- Easily Expandable
- Common Clear

CONNECTION DIAGRAM DIP (TOP VIEW)

PIN NAMES

A_{0}, A_{1}, A_{2}
$\frac{D}{E}$
C

Address Inputs
Data Input
Enable (Active LOW) Input Clear (Active LOW) input
Parallel Latch Outputs (Note b)

LOADING (Note a)	
HIGH	LOW
0.5 U.L.	0.25 U.L.
0.5 U.L.	0.25 U.L.
1.0 U.L.	0.5 U.L.
0.5 U.L.	0.25 U.L.
10 U.L.	5 (2.5) U.L.

8-BIT ADDRESSABLE LATCH

LOW POWER SCHOTTKY

N SUFFIX
PLASTIC CASE 648-08

ORDERING INFORMATION

SN54LSXXXJ	Ceramic
SN74LSXXXN	Plastic
SN74LSXXXD	SOIC

NOTES:
a) 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A}$ HIGH/1.6 mA LOW.
b) The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial
(74) Temperature Ranges.

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Typ	Max	Unit
$V_{\text {CC }}$	Supply Voltage	54	4.5	5.0	5.5	V
		74	4.75	5.0	5.25	
$\mathrm{~T}_{\mathrm{A}}$	Operating Ambient Temperature Range	54	-55	25	125	${ }^{\circ} \mathrm{C}$
		74	0	25	70	
IOH	Output Current -High	54,74			-0.4	mA
IOL	Output Current - Low	54			4.0	mA
		74			8.0	

LOGIC DIAGRAM

FUNCTIONAL DESCRIPTION

The SN54/74LS259 has four modes of operation as shown in the mode selection table. In the addressable latch mode, data on the Data line (D) is written into the addressed latch. The addressed latch will follow the data input with all non-addressed latches remaining in their previous states. In the memory mode, all latches remain in their previous state and are unaffected by the Data or Address inputs.

In the one-of-eight decoding or demultiplexing mode, the
addressed output will follow the state of the D input with all other inputs in the LOW state. In the clear mode all outputs are LOW and unaffected by the address and data inputs.
When operating the SN54/74LS259 as an addressable latch, changing more then one bit of the address could impose a transient wrong address. Therefore, this should only be done while in the memory mode.
The truth table below summarizes the operations.

MODE SELECTION

E	C	MODE
L	H	Addressable Latch
H	H	Memory
L	L	Active HIGH Eight-Channel
H	L	Demultiplexer

TRUTH TABLE
PRESENT OUTPUT STATES

X = Don't Care Condition
L = LOW Voltage Level
$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
$\mathrm{Q}_{\mathrm{N}-1}=$ Previous Output State

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Symbol	Parameter		Limits			Unit	Test Conditions	
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V	Guaranteed In All Inputs	HIGH Voltage for
VIL	Input LOW Voltage	54			0.7	V	Guaranteed Input LOW Voltage for All Inputs	
		74			0.8			
V_{IK}	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{IN}}$	$-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	54	2.5	3.5		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOH}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\text {IL }}$ per Truth Table	
		74	2.7	3.5		V		
VOL	Output LOW Voltage	54, 74		0.25	0.4	V	$\mathrm{IOL}=4.0 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \mathrm{MIN}, \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{IL} \text { or }} \mathrm{V}_{\mathrm{IH}} \\ & \text { per Truth Table } \end{aligned}$
		74		0.35	0.5	V	$\mathrm{IOL}=8.0 \mathrm{~mA}$	
IIH	Input HIGH Current				20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}$	2.7 V
					0.1	mA	$V_{C C}=$ MAX, $V^{\text {I }}$	7.0 V
IIL	Input LOW Current				-0.4	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}$	$=0.4 \mathrm{~V}$
los	Short Circuit Current (Note 1)		-20		-100	mA	$V_{C C}=$ MAX	
ICC	Power Supply Current				36	mA	$V_{C C}=$ MAX	

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.
AC CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$

Symbol	Parameter	Limits			Unit	Test Conditions
		Min	Typ	Max		
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	Turn-Off Delay, Enable to Output Turn-On Delay, Enable to Output		$\begin{aligned} & 22 \\ & 15 \end{aligned}$	$\begin{aligned} & 35 \\ & 24 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$C_{L}=15 \mathrm{pF}$
$\begin{aligned} & \hline \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Turn-Off Delay, Data to Output Turn-On Delay, Data to Output		$\begin{aligned} & 20 \\ & 13 \end{aligned}$	$\begin{aligned} & 32 \\ & 21 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	
$\overline{\mathrm{tPLH}}$ tPHL	Turn-Off Delay, Address to Output Turn-On Delay, Address to Output		$\begin{aligned} & 24 \\ & 18 \end{aligned}$	$\begin{aligned} & 38 \\ & 29 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
tPHL	Turn-On Delay, Clear to Output		17	27	ns	

AC SET-UP REQUIREMENTS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$

Symbol	Parameter	Limits			Unit
		Min	Typ	Max	
t_{s}	Input Setup Time	20			ns
tw	Pulse Width, Clear or Enable	15			ns
th	Hold Time, Data	5.0			ns
$t_{\text {h }}$	Hold Time, Address	20			ns

SN54/74LS259

AC WAVEFORMS

OTHER CONDITIONS: $\bar{E}=L, \bar{C}=H, A=$ STABLE
Figure 2. Turn-on and Turn-off Delays, Data to Output

Figure 1. Turn-on and Turn-off Delays, Enable To Output and Enable Pulse Width

OTHER CONDITIONS: $\bar{E}=L, \bar{C}=L, D=H$
Figure 3. Turn-on and Turn-off Delays, Address to Output

OTHER CONDITIONS: $\bar{E}=\mathrm{H}$
Figure 5. Turn-on Delay, Clear to Output

OTHER CONDITIONS: $\bar{C}=\mathrm{H}, \mathrm{A}=$ STABLE
Figure 4. Setup and Hold Time, Data to Enable

OTHER CONDITIONS: $\overline{\mathrm{C}}=\mathrm{H}$
Figure 6. Setup Time, Address to Enable (See Notes 1 and 2)

NOTES:

1. The Address to Enable Setup Time is the time before the HIGH-to-LOW Enable transition that the Address must be stable so that the correct latch is addressed and the other latches are not affected.
2. The shaded areas indicate when the inputs are permitted to change for predictable output performance.
