DUAL 4-BIT ADDRESSABLE LATCH

The SN54/74LS256 is a Dual 4-Bit Addressable Latch with common control inputs; these include two Address inputs ($\mathrm{A}_{0}, \mathrm{~A}_{1}$), an active LOW Enable input (E) and an active LOW Clear input (CL). Each latch has a Data input (D) and four outputs $\left(Q_{0}-Q_{3}\right)$.

When the Enable (E) is HIGH and the Clear input (CL) is LOW, all outputs $\left(Q_{0}-Q_{3}\right)$ are LOW. Dual 4-channel demultiplexing occurs when the (CL) and E are both LOW. When CL is HIGH and E is LOW, the selected output $\left(Q_{0}-Q_{3}\right)$, determined by the Address inputs, follows D. When the E goes HIGH, the contents of the latch are stored. When operating in the addressable latch mode ($\mathrm{E}=\mathrm{LOW}, \mathrm{CL}=\mathrm{HIGH}$), changing more than one bit of the Address $\left(A_{0}, A_{1}\right)$ could impose a transient wrong address. Therefore, this should be done only while in the memory mode ($\mathrm{E}=\mathrm{CL}=\mathrm{HIGH}$).

- Serial-to-Parallel Capability
- Output From Each Storage Bit Available
- Random (Addressable) Data Entry
- Easily Expandable
- Active Low Common Clear
- Input Clamp Diodes Limit High Speed Termination Effects

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

PIN NAMES
LOADING (Note a)

HIGH	LOW
0.5 U.L.	0.25 U.L.
0.5 U.L.	0.25 U.L.
1.0 U.L.	0.5 U.L.
0.5 U.L.	0.25 U.L.
10 U.L.	5 (2.5) U.L.

$\mathrm{A}_{0}, \mathrm{~A}_{1}$
Address Inputs
\underline{D}_{a}, D_{b}
$\frac{\mathrm{E}}{\mathrm{CL}}$
$Q_{0 a}-Q_{3 a}$,
$Q_{0 b}-Q_{3 b}$

Data Inputs
Enable Input (Active LOW)
Clear Input (Active LOW)
Parallel Latch Outputs (Note b)

NOTES:
a) 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A}$ HIGH/1.6 mA LOW.
b) The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges.

LOGIC DIAGRAM

$V_{C C}=$ PIN 16
GND $=$ PIN 8
$\mathrm{O}=\mathrm{PIN}$ NUMBERS
TRUTH TABLE

CL	E	D	A_{0}	A_{1}	Q_{0}	Q_{1}	Q2	Q ${ }^{1}$	MODE
L	H	X	X	X	L	L	L	L	Clear
L	L	L	L	L	L	L	L	L	Demultiplex
L	L	H	L	L	H	L	L	L	
L	L	L	H	L	L	L	L	L	
L	L	H	H	L	L	H	L	L	
L	L	L	L	H	L	L	L	L	
L	L	H	L	H	L	L	H	L	
L	L	L	H	H	L	L	L	L	
L	L	H	H	H	L	L	L	H	
H	H	X	X	X	Q_{N-1}	Q_{N-1}	Q_{N-1}	$\mathrm{Q}_{\mathrm{N}-1}$	Memory
H	L	L	L	L	L	Q_{N-1}	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	Addressable
H	L	H	L	L	H	Q_{N-1}	Q_{N-1}	QN-1	Latch
H	L	L	H	L	$\mathrm{Q}_{\mathrm{N}-1}$	L	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	
H	L	H	H	L	$\mathrm{Q}_{\mathrm{N}-1}$	H	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	
H	L	L	L	H	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	L	QN-1	
H	L	H	L	H	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	H	$\mathrm{Q}_{\mathrm{N}-1}$	
H	L	L	H	H	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	L	
H	L	H	H	H	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	$\mathrm{Q}_{\mathrm{N}-1}$	H	

H = HIGH Voltage Level L = LOW Voltage Level
X = Immaterial

MODE SELECTION		
E	CL	MODE
L	H	Addressable Latch
H	H	Memory
L	L	Dual 4-Channel Demultiplexer
H	L	Clear

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Typ	Max	Unit
V_{CC}	Supply Voltage	54	4.5	5.0	5.5	V
		74	4.75	5.0	5.25	
$\mathrm{~T}_{\mathrm{A}}$	Operating Ambient Temperature Range	54	-55	25	125	${ }^{\circ} \mathrm{C}$
		74	0	25	70	
IOH	Output Current - High	54,74			-0.4	mA
IOL	Output Current - Low	54			4.0	mA
		74			8.0	

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Symbol	Parameter		Limits			Unit	Test Conditions	
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V	Guaranteed In All Inputs	HIGH Voltage for
VIL	Input LOW Voltage	54			0.7	V	Guaranteed Input LOW Voltage for All Inputs	
		74			0.8			
$\mathrm{V}_{\text {IK }}$	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$	
VOH	Output HIGH Voltage	54,74	2.4	3.5		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or $V_{\text {IL }}$ per Truth Table	
V_{OL}	Output LOW Voltage	54, 74		0.25	0.4	V	$\mathrm{IOL}=4.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \mathrm{MIN}$, $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH} per Truth Table
		74		0.35	0.5	V	$\mathrm{IOL}=8.0 \mathrm{~mA}$	
${ }^{\text {IH }}$	Input HIGH Current Others E Input				$\begin{aligned} & 20 \\ & 40 \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$	
	Others E Input				$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$	
IIL	Input LOW Current Others E Input				$\begin{aligned} & -0.4 \\ & -0.8 \end{aligned}$	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	
los	Short Circuit Current (Note 1)		-20		-100	mA	$V_{C C}=$ MAX	
ICC	Power Supply Current				30	mA	$V_{C C}=$ MAX	

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.
AC CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Limits			Unit	Test Conditions	
		Min	Typ	Max			
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Turn-Off Delay, Enable to Output Turn-On Delay, Enable to Output		$\begin{aligned} & 20 \\ & 16 \end{aligned}$	$\begin{aligned} & 27 \\ & 24 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Figure 1	$\begin{gathered} \mathrm{V}_{C C}=5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{gathered}$
$\begin{aligned} & \hline \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Turn-Off Delay, Data to Output Turn-On Delay, Data to Output		$\begin{aligned} & 20 \\ & 13 \end{aligned}$	$\begin{aligned} & 30 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	Figure 2	
$\begin{aligned} & \hline \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Turn-Off Delay, Address to Output Turn-On Delay, Address to Output		$\begin{aligned} & 20 \\ & 14 \end{aligned}$	$\begin{aligned} & 30 \\ & 24 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	Figure 3	
tPHL	Turn-On Delay, Clear to Output		12	23	ns	Figure 5	

AC SET-UP REQUIREMENTS $\left(T_{A}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Limits			Unit	Test Conditions	
		Min	Typ	Max			
$\mathrm{t}_{\text {s }}$	Data Setup Time	20			ns	Figures 4 \& 6	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{t}_{\text {s }}$	Address Setup Time	0			ns		
th_{h}	Data Hold Time	0			ns	Figure 4	
$t_{\text {h }}$	Address Hold Time	15			ns	Figure 6	
tw	Enable Pulse Width	15			ns	Figure 1	

AC WAVEFORMS

Figure 1. Turn-on and Turn-off Delays, Enable To Output and Enable Pulse Width

OTHER CONDITIONS: $\bar{E}=L, \overline{C L}=H, A=$ STABLE
Figure 2. Turn-on and Turn-off Delays, Data to Output

OTHER CONDITIONS: $\bar{E}=L, \overline{C L}=L, D=H$
Figure 3. Turn-on and Turn-off Delays, Address to Output

OTHER CONDITIONS: $\bar{E}=\mathrm{H}$
Figure 5. Turn-on Delay, Clear to Output

OTHER CONDITIONS: $\bar{C}=\mathrm{H}, \mathrm{A}=$ STABLE
Figure 4. Setup and Hold Time, Data to Enable

OTHER CONDITIONS: $\overline{C L}=\mathrm{H}$
Figure 6. Setup Time, Address to Enable (See Notes 1 and 2)

NOTES:

1. The Address to Enable Setup Time is the time before the HIGH-to-LOW Enable transition that the Address must be stable so that the correct latch is addressed and the other latches are not affected.
2. The shaded areas indicate when the inputs are permitted to change for predictable output performance.
